METRIC LEARNING FOR BIg DATA

Problem: Metric learning for massive datasets requires
effective representation, indexing, and search.

Approach: We advocate similarity-preserving discrete
embeddings, mapping data to binary codes. Compared
to real-valued embeddings:

¢ binary codes are storage-eflicient.
¢ hamming distance computation is extremely fast.

¢ multi-index hashing for fast Hamming NN search.

Similarity-preserving mapping from labelled data:

¢ semantically similar items map to nearby codes.

¢ dissimilar items should map to distant codes.

! —
' -~ [] [] [] C—
-l -
e
2/ ®]
//'/ -

l
110110 010110 --- 001000 000001

BACKGROUND CONTEXT

Similarity-Preserving Hashing:

¢ locality-sensitive hashing (e.q., [Indyk & Motwani 98;
Charikar 02; Raginsky € Lazebnik 09])

¢ data-dependent learning-based techniques (e.g., [Kulis
&9 Darrell 09, Weiss et al 08, Gong € Lazebnik 11))

Such hashing models are optimized to preserve Euclidean
distances; they pre-suppose a Fuclidean embedding.

Semantic Hashing /Salakhutdinov & Hinton 07, Tor-
ralba et al 08/

¢ unsupervised learning, auto-encoder, nonlinear NCA

o results on semantic labelled data not much better than
Euclidean NN retrieval

& loss function?

Minimal Loss Hashing /Norouzi and Fleet 11/

¢ quantized linear mapping
b(x) = sign((Wx))
where sign is the element sign function
¢ pairwise hinge loss

— similar items should map to codes within p bits.

A

L(h, g, 1)—_/

p |h —glln

— dissimilar items should differ by > p bits:

L(h,g,0) \

p |h —glln

¢ improvement over semantic hashing, but not signifi-
cantly better than NN search.

Hamming Distance Metric Learning

Mohammad Norouzi

LEARNING FORMULATION

Input data: x1,Xs,...,xy (x; € RP)

Binary mapping: b(x;w) : RP — H ={—-1,4+1}¢

b(x;w) = sign(f(x;w))

Families of hash functions defined via f:

1. f(x) = Wx: Simplest, well studied case.

2. f(x) = cos(Wx): Element-wise cosine applied to lin-
ear transform (e.g., [Weiss et al 08]).

3. f(x) = tanh(W5 tanh(W;x)): Multi-layer neural net.

Our framework is applicable to any differentiable f.

Hash function parameters are chosen to preserve similar-
ity ranking of items with respect to each exemplar.

[.OSsSs

N
=1’

Organize dataset into triples, D = {(Xz',Xj Xy)}

such that x; i1s more similar to X,j_ than x; :

T ——
- —
>
o] ’ -
e AL
\

Find b(x) that satisfies as many ranking constraints as
possible in Hamming space; 1.e€.,

| b(x) =b(xT) || <[b(x) —blx

Bl

Triplet ranking loss: For a code triplet (h,h™ h™),
obtained by applying b(-) to (x,x7,x), we define

gtriplet(h7h+7h_) — [“h_h+‘|H T Hh_h_HH 1}4_

where [a|; = max(a;, 0).

LEARNING OBJECTIVE

Minimize regularized empirical loss:

L) = 3 Lusipres (b(x; W), b(x" 3 w), b(x "5 w)) + 2 [|wl

2
(x,xt,x—)€D

¢ Incorporates quantization and Hamming distance.

¢ hard to optimize: L is discontinuous and non-convex.

Hashing as structured prediction:

sign (f(x; w))

= argmax h' f(x;w)
heH

b(x; W)

Inspired by structured prediction with latent variables
[Taskar et al 03; Tsochantaridis et al 04; Yu € Joachims
09/ we formulate hash function learning as the minimiza-
tion of an upper bound on the regularized empirical loss.

University of Toronto

BouND ON LSS

The bound on empirical loss derives from the following:

leriplet (b(x), b(x7), b(x7)) <

g.gt,g

— max {hTf(x)} — max {h+Tf(X+)} — max {h_Tf(X_

where g, g7, g7, h,h" and h™ are all ¢-bit binary codes.

Proof: When (g,g",g7) = (b(x),b(x"),b(x™)) maxi-
mizes the first term on the RHS, then LHS = RHS.
In all other cases, the RHS can only get larger.

STOCHASTIC GRADIENT DESCENT

We randomly initialize w(©). Given w*) at iteration
t + 1, we use the following procedure to update w{t+1):

1. Select a random triplet (x,x%,x~) from D.

2. (g,87,&) = solution of loss-augmented inference.
3. (h,h*,h™) = (b(x; wih)), b(xT; wt)), b(x—; wit)))

4. Update model parameters using

5 — 0 f(x)(g—fl) 0f(x)(g —f1+)' Of(x™) 3]

Oow Ow (g__h—)

OwW

wt) Zw® s aw®

where 0f(x)/0w = O0f(x;w)/Ow|___) and 7 is the

learning rate.

We use mini-batches, and momentum. To form triples,
x T is chosen to have same label as x, while x™ is a close
item in Hamming space to x but with a different label.

[LOSS-AUGMENTED INFERENCE

To use the upper bound, we must solve:

(g g y 8) — arlginax { gtriplet(g; g—l_) g_)
(g.8T,87) - LT n T _
+g f(x)+g" f(xT)+g f(x7) }

There are 237 possible binary codes to maximize over.

For triplet loss functions that depend only on the value

of
dlg,g".g7) = llg—g"llz — lge—g |la,

an exact O(g?) dynamic programming algorithm exists.

Idea: d(g,g™,g) can take on only 2¢+1 possible values,
since it is an integer between —¢q and +q.

ASYMMETRIC HAMMING DISTANCE

Multiple items in Hamming space are often equidistant
from a query code b(u). We measure proximity with an
Asymmetric Hamming (AH) distance between the query
u € RP and a database binary code h € H:

AH(uh;'s) = 7 | tanh(Diag(s) f(u)) b

max {Loriplet(&, g g)+e f(x)+ g+Tf(X+) ™ g_Tf(X_)}

David J. Fleet Ruslan Salakhutdinov

CIFAR-10

Precision@Ffk plots for Hamming distance on 512, 256,
128, and 64-bit codes, trained with (left) triplet ranking
loss (rlght) pairwise hinge loss on CIFAR-10:

0.79¢ —512 b|t Imear trlpletA 0.79¢ —512 b|t Imear palrW|seA
= 256-Dbit, linear, triplet - 256-bit, linear, pairwise

0.76 == 128-Dit, linear, triplet| 0.76 == 128-Dit, linear, pairwise
== 64-bit, linear, triplet == 64-bit, linear, pairwise

0.7}

Precision @k
Precision @k

10 ““‘1“}(20 © 1000 10000 ST ““‘1‘20 "~ 1000 10000

Recognition accuracy on the CIFAR-10 test set:
(H = Hamming, AH = Asym. Hamming)

Hashing, Loss AknnN Dis. 64-bit 128-bit 256-bit H12-bit

Linear, pairwise 7 H 72.2 72.8 73.8 74.6
Linear, pairwise 8 AH 72.3 73.5 74.3 74.9
Linear, triplet 2 H 75.1 75.9 77.1 77.9
Linear, triplet 2 AH 75.7 76.8 77.5 78.0

Baseline Accuracy
One-vs-all linear L2 SVM [Coates et al 11] 77.9
Fuclidean 3NN 59.3

256 /64-bit Hamming and Fuclidean Retrieval Results:

query (256bit Hamming) (64bit Hamming) (Euclidean)

] l%i “'_ : ¥
‘PV/ - \.’. 4,‘-- rf
» I \ ‘{‘.)
', '
)
e
y Ty
%0
- ‘ﬁ"l?"
7

B a5
Si65 T
SR
i 8
M ENE
LiE B

o [l X2
A RN A

!ﬁﬂn

MNIST

Hamming precision@k plots for MNIST (left) four
methods with 32-bit codes (right) three code lengths:

X X ey
®) 0.96¢ 1 ®) 0.96¢ S,
c c
Q 9
o\ 0.93¢ R 0.93¢ >
§ == Two-layer net, triplet @ == 128-Dit, linear, triplet
ol 0_9,—Tyvo—lay(?r net, pairwis O . gl|=64-bit, linear, triplet

==Linear, triplet —=32-bit, linear, triplet

==l inear, pairwise | N\ V| == 'Euclidean distance

10 1&0 1000 10000 10 1&0 1000 10000

Classification error rates on MNIST test set:

Hashing, Loss Dis. knn 32-bit 04-bit 128 bit

Linear, pairwise 2D 2 4.66 3.16 2.61
Linear, triplet S 2 4.44 3.06 2.44
2-layer Net, pairwise & 30 1.50 1.45 1.44
2-layer Net, triplet = 30 1.45 1.38 1.27
Linear, pairwise = 3 4.30 2.78 2.46
Linear, triplet = 3 388 290 2.51
2-layer Net, pairwise = 30 1.50 1.36 1.35
2-layer Net, triplet < 30 1.45 1.29 1.20
Baseline Error
Deep net + pretraining /Salakhutdinov €& Hinton 06/ 1.2
Large margin nearest neighbor [Weinberger et al 05/ 1.3
RBF-kernel SVM 1.4
2-layer neural net 1.6
Fuclidean 3NN 2.9

MULTI-INDEX HASHING /[CVPR 12]

Exact NN search in Hamming space.

Search tasks: (Given a corpus of
g-bit codes, and a query u,

(1) find k& codes with k£ smallest
Haming distances from u,

(2) find all codes that differ from
u in r bits or less.

Imagine a dataset of 15-bit codes, a search radius of r=2.
Black marks depict bits that differ from a query u.

CI 1T 1T 1T 1T 1T 1T 1T 1T 1T 1T = 11
CE 1T 1T 1T 1T I 1T B 1T 17 17 11
CI- 1B 1T 1T I 1T 11T 17711

Database
o200

T T T W W W [T T]

(The first 3 codes have Hamming distance < r = 2.)

Key Idea: Partition the codes into 3 substrings. Then,
instead of searching » =2 in the tull codes, search r=0
in the substrings.

p—

1
—
—_—
—
—
—_—
—
=

1
p—
=
—
pe—
—
—

3 Databases

C 1 11

When two binary codes h and g differ by r bits or less,
then, in at least one of their 3 substrings they must
differ by at most |r/3]| bits.

Result: A single threded implementation finds 1000
Hamming nearest neighbors of queries from one billion
64-bit codes in under 100ms.

(source code avilable at github.com/norouzi/mih/)

