
HammingDistanceMetricLearning

Mohammad Norouzi David J. Fleet Ruslan Salakhutdinov
University of Toronto

Metric Learning for Big Data

Problem: Metric learning for massive datasets requires
effective representation, indexing, and search.

Approach: We advocate similarity-preserving discrete
embeddings, mapping data to binary codes. Compared
to real-valued embeddings:

� binary codes are storage-efficient.

� hamming distance computation is extremely fast.

� multi-index hashing for fast Hamming NN search.

Similarity-preserving mapping from labelled data:

� semantically similar items map to nearby codes.

� dissimilar items should map to distant codes.

.

↓ ↓ ↓ ↓
. . . 110110 010110 . . . 001000 000001 . . .

Background Context

Similarity-Preserving Hashing:

� locality-sensitive hashing (e.g., [Indyk & Motwani 98;
Charikar 02; Raginsky & Lazebnik 09])

� data-dependent learning-based techniques (e.g., [Kulis
& Darrell 09, Weiss et al 08, Gong & Lazebnik 11])

Such hashing models are optimized to preserve Euclidean
distances; they pre-suppose a Euclidean embedding.

Semantic Hashing [Salakhutdinov & Hinton 07, Tor-
ralba et al 08]

� unsupervised learning, auto-encoder, nonlinear NCA

� results on semantic labelled data not much better than
Euclidean NN retrieval

� loss function?

Minimal Loss Hashing [Norouzi and Fleet 11]

� quantized linear mapping

b(x) = sign((Wx))

where sign is the element sign function

� pairwise hinge loss

− similar items should map to codes within ρ bits.

L(h,g, 1)

ρ ||h − g||H

− dissimilar items should differ by > ρ bits:

L(h,g, 0)

ρ ||h − g||H

� improvement over semantic hashing, but not signifi-
cantly better than NN search.

Learning formulation

Input data: x1,x2, . . . ,xN (xi ∈ Rp)

Binary mapping: b(x; w) : Rp → H ≡ {−1,+1}q

b(x; w) = sign (f(x; w))

Families of hash functions defined via f :

1. f(x) = Wx : Simplest, well studied case.

2. f(x) = cos(Wx) : Element-wise cosine applied to lin-
ear transform (e.g., [Weiss et al 08]).

3. f(x) = tanh(W2 tanh(W1x)) : Multi-layer neural net.

Our framework is applicable to any differentiable f .

Hash function parameters are chosen to preserve similar-
ity ranking of items with respect to each exemplar.

Loss

Organize dataset into triples, D =
{

(xi,x
+
i ,x

−
i)
}N
i=1

,

such that xi is more similar to x+
i than x−i :

D =
{(

, ,
)
,
(

, ,
)
, . . .

}
Find b(x) that satisfies as many ranking constraints as
possible in Hamming space; i.e.,∥∥ b(x)− b(x+)

∥∥
H
<
∥∥ b(x)− b(x−)

∥∥
H

Triplet ranking loss: For a code triplet (h,h+,h−),
obtained by applying b(·) to (x,x+,x−), we define

`triplet(h,h
+,h−) =

[
‖h−h+‖H − ‖h−h−‖H + 1

]
+

where [α]+ ≡ max(α, 0).

Learning Objective

Minimize regularized empirical loss:

L(w) =
∑

(x,x+,x−)∈D

`triplet
(
b(x;w), b(x+;w), b(x−;w)

)
+
λ

2
‖w‖22

� incorporates quantization and Hamming distance.

� hard to optimize: L is discontinuous and non-convex.

Hashing as structured prediction:

b(x; w) = sign (f(x; w))

= argmax
h∈H

hTf(x; w)

Inspired by structured prediction with latent variables
[Taskar et al 03; Tsochantaridis et al 04; Yu & Joachims
09] we formulate hash function learning as the minimiza-
tion of an upper bound on the regularized empirical loss.

Bound on Loss

The bound on empirical loss derives from the following:

`triplet
(
b(x), b(x+), b(x−)

)
≤

max
g,g+,g−

{
`triplet(g,g

+,g−) + gTf(x) + g+T
f(x+) + g−

T
f(x−)

}
−max

h

{
hTf(x)

}
−max

h+

{
h+T

f(x+)
}
−max

h−

{
h−

T
f(x−)

}
where g,g+,g−,h,h+ and h− are all q-bit binary codes.

Proof: When (g,g+,g−) = (b(x), b(x+), b(x−)) maxi-
mizes the first term on the RHS, then LHS = RHS.
In all other cases, the RHS can only get larger.

Stochastic Gradient Descent

We randomly initialize w(0). Given w(t), at iteration
t+ 1, we use the following procedure to update w(t+1):

1. Select a random triplet (x,x+,x−) from D.

2. (ĝ, ĝ+, ĝ−) = solution of loss-augmented inference.

3. (ĥ, ĥ+, ĥ−) = (b(x; w(t)), b(x+; w(t)), b(x−; w(t)))

4. Update model parameters using

δ =

[
∂f(x)

∂w

(
ĝ−ĥ

)
+
∂f(x+)

∂w

(
ĝ+−ĥ+)+ ∂f(x−)

∂w

(
ĝ−−ĥ−

)]
w(t+1)=w(t) − ηδ − ηλw(t)

where ∂f(x)/∂w ≡ ∂f(x; w)/∂w|w=w(t) and η is the
learning rate.

We use mini-batches, and momentum. To form triples,
x+ is chosen to have same label as x, while x− is a close
item in Hamming space to x but with a different label.

Loss-augmented inference

To use the upper bound, we must solve:

(ĝ, ĝ+, ĝ−) = argmax
(g,g+,g−)

{
`triplet

(
g, g+, g−

)
+gTf(x) + g+T

f(x+) + g−
T
f(x−)

}
There are 23q possible binary codes to maximize over.

For triplet loss functions that depend only on the value
of

d(g,g+,g−) ≡ ‖g−g+‖H − ‖g−g−‖H ,

an exact O(q2) dynamic programming algorithm exists.

Idea: d(g,g+,g−) can take on only 2q+1 possible values,
since it is an integer between −q and +q.

Asymmetric Hamming Distance

Multiple items in Hamming space are often equidistant
from a query code b(u). We measure proximity with an
Asymmetric Hamming (AH) distance between the query
u ∈ Rp and a database binary code h ∈ H:

AH(u,h; s) =
1

4
‖ tanh(Diag(s) f(u))− h ‖22

CIFAR-10

Precision@k plots for Hamming distance on 512, 256,
128, and 64-bit codes, trained with (left) triplet ranking
loss (right) pairwise hinge loss on CIFAR-10:

10 100 1000 10000
0.61

0.64

0.67

0.7

0.73

0.76

0.79

k

P
re

c
is

io
n
 @

k

512−bit, linear, triplet
256−bit, linear, triplet
128−bit, linear, triplet
64−bit, linear, triplet

10 100 1000 10000
0.61

0.64

0.67

0.7

0.73

0.76

0.79

k

P
re

c
is

io
n
 @

k

512−bit, linear, pairwise
256−bit, linear, pairwise
128−bit, linear, pairwise
64−bit, linear, pairwise

Recognition accuracy on the CIFAR-10 test set:
(H ≡ Hamming, AH ≡ Asym. Hamming)

Hashing, Loss kNN Dis. 64-bit 128-bit 256-bit 512-bit

Linear, pairwise 7 H 72.2 72.8 73.8 74.6
Linear, pairwise 8 AH 72.3 73.5 74.3 74.9
Linear, triplet 2 H 75.1 75.9 77.1 77.9
Linear, triplet 2 AH 75.7 76.8 77.5 78.0

Baseline Accuracy

One-vs-all linear L2 SVM [Coates et al 11] 77.9
Euclidean 3NN 59.3

256/64-bit Hamming and Euclidean Retrieval Results:

query (256bit Hamming) (64bit Hamming) (Euclidean)

MNIST

Hamming precision@k plots for MNIST (left) four
methods with 32-bit codes (right) three code lengths:

10 100 1000 10000
0.87

0.9

0.93

0.96

0.99

k

P
re

c
is

io
n
 @

k

Two−layer net, triplet
Two−layer net, pairwise
Linear, triplet
Linear, pairwise

10 100 1000 10000
0.87

0.9

0.93

0.96

0.99

k

P
re

c
is

io
n
 @

k

128−bit, linear, triplet
64−bit, linear, triplet
32−bit, linear, triplet
Euclidean distance

Classification error rates on MNIST test set:

Hashing, Loss Dis. kNN 32-bit 64-bit 128-bit

Linear, pairwise

H
a
m
m
in
g 2 4.66 3.16 2.61

Linear, triplet 2 4.44 3.06 2.44
2-layer Net, pairwise 30 1.50 1.45 1.44
2-layer Net, triplet 30 1.45 1.38 1.27

Linear, pairwise

A
sy
.
H
a
m
.

3 4.30 2.78 2.46
Linear, triplet 3 3.88 2.90 2.51
2-layer Net, pairwise 30 1.50 1.36 1.35
2-layer Net, triplet 30 1.45 1.29 1.20

Baseline Error

Deep net + pretraining [Salakhutdinov & Hinton 06] 1.2
Large margin nearest neighbor [Weinberger et al 05] 1.3
RBF-kernel SVM 1.4
2-layer neural net 1.6
Euclidean 3NN 2.9

Multi-Index Hashing [CVPR 12]

Exact NN search in Hamming space.

Search tasks: Given a corpus of
q-bit codes, and a query u,

(1) find k codes with k smallest
Haming distances from u,

(2) find all codes that differ from
u in r bits or less.

Imagine a dataset of 15-bit codes, a search radius of r=2.
Black marks depict bits that differ from a query u.

(The first 3 codes have Hamming distance ≤ r = 2.)

Key Idea: Partition the codes into 3 substrings. Then,
instead of searching r= 2 in the full codes, search r= 0
in the substrings.

When two binary codes h and g differ by r bits or less,
then, in at least one of their 3 substrings they must
differ by at most br/3c bits.

Result: A single threded implementation finds 1000
Hamming nearest neighbors of queries from one billion
64-bit codes in under 100ms.
(source code avilable at github.com/norouzi/mih/)

