Metric Learning for Big Data

Problem: Metric learning for massive datasets requires effective representation, indexing, and search.

Approach: We advocate similarity-preserving discrete embeddings, mapping data to binary codes. Compared to real-valued embeddings:

- \diamond binary codes are storage-efficient.
- \diamond hamming distance computation is extremely fast.
- \diamond multi-index hashing for fast Hamming NN search.

Similarity-preserving mapping from labelled data:

- \diamond semantically similar items map to nearby codes.
- \diamond dissimilar items should map to distant codes.

BACKGROUND CONTEXT

Similarity-Preserving Hashing:

- \diamond locality-sensitive hashing (e.g., *Indyk & Motwani 98*; Charikar 02; Raginsky & Lazebnik 09])
- \diamond data-dependent learning-based techniques (e.g., /Kulis & Darrell 09, Weiss et al 08, Gong & Lazebnik 11])

Such hashing models are optimized to preserve Euclidean distances; they pre-suppose a Euclidean embedding.

Semantic Hashing [Salakhutdinov & Hinton 07, Torralba et al 08]

♦ unsupervised learning, auto-encoder, nonlinear NCA

- ♦ results on semantic labelled data not much better than Euclidean NN retrieval
- \diamond loss function?

Minimal Loss Hashing [Norouzi and Fleet 11]

♦ quantized linear mapping

 $b(\mathbf{x}) = \operatorname{sign}((W\mathbf{x}))$

where sign is the element sign function

 \diamond pairwise hinge loss

- similar items should map to codes within ρ bits.

- dissimilar items should differ by $> \rho$ bits:

◇ improvement over semantic hashing, but not significantly better than NN search.

LEARNING FORMULATION

Input data: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \quad (\mathbf{x}_i \in \mathbb{R}^p)$

$$1 f(\mathbf{x}) =$$

$$f(\mathbf{v}) =$$

3.
$$f(\mathbf{x}) = f(\mathbf{x})$$

Our framework is applicable to any differentiable f.

Hash function parameters are chosen to preserve similarity ranking of items with respect to each exemplar.

Loss

Organize dataset into triples, $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{x}_i^+, \mathbf{x}_i^-)\}_{i=1}^N$, such that \mathbf{x}_i is more similar to \mathbf{x}_i^+ than \mathbf{x}_i^- :

LEARNING OBJECTIVE

Minimize regularized empirical loss:

$$\mathcal{L}(\mathbf{w}) = \sum_{(\mathbf{x}, \mathbf{x}^+, \mathbf{x}^-) \in \mathcal{D}} \ell_{\text{triplet}} \left(b(\mathbf{x}; \mathbf{w}), \ b(\mathbf{x}^+; \mathbf{w}), \ b(\mathbf{x}^-; \mathbf{w}) \right) + \frac{\lambda}{2} \|\mathbf{w}\|_2^2$$

♦ incorporates quantization and Hamming distance. \diamond hard to optimize: \mathcal{L} is discontinuous and non-convex.

Hashing as structured prediction:

Inspired by structured prediction with latent variables [Taskar et al 03; Tsochantaridis et al 04; Yu & Joachims] 09 we formulate hash function learning as the minimization of an upper bound on the regularized empirical loss.

Hamming Distance Metric Learning

Mohammad Norouzi David J. Fleet Ruslan Salakhutdinov University of Toronto

Binary mapping: $b(\mathbf{x}; \mathbf{w}) : \mathbb{R}^p \to \mathcal{H} \equiv \{-1, +1\}^q$

 $b(\mathbf{x}; \mathbf{w}) = \operatorname{sign} (f(\mathbf{x}; \mathbf{w}))$

Families of hash functions defined via f:

1. $f(\mathbf{x}) = W\mathbf{x}$: Simplest, well studied case.

2. $f(\mathbf{x}) = \cos(W\mathbf{x})$: Element-wise cosine applied to linnsform (e.g., $|Weiss \ et \ al \ 08|$).

 $\tanh(W_2 \tanh(W_1 \mathbf{x}))$: Multi-layer neural net.

Find $b(\mathbf{x})$ that satisfies as many ranking constraints as possible in Hamming space; *i.e.*,

 $\left\| b(\mathbf{x}) - b(\mathbf{x}^{+}) \right\|_{H} < \left\| b(\mathbf{x}) - b(\mathbf{x}^{-}) \right\|_{H}$

Triplet ranking loss: For a code triplet $(\mathbf{h}, \mathbf{h}^+, \mathbf{h}^-)$, obtained by applying $b(\cdot)$ to $(\mathbf{x}, \mathbf{x}^+, \mathbf{x}^-)$, we define

 $\ell_{\text{triplet}}(\mathbf{h}, \mathbf{h}^+, \mathbf{h}^-) = \left[\|\mathbf{h} - \mathbf{h}^+\|_H - \|\mathbf{h} - \mathbf{h}^-\|_H + 1 \right]_+$

where $[\alpha]_+ \equiv \max(\alpha, 0)$.

$$b(\mathbf{x}; \mathbf{w}) = \operatorname{sign} (f(\mathbf{x}; \mathbf{w}))$$
$$= \operatorname{argmax}_{\mathbf{h} \in \mathcal{H}} \mathbf{h}^{\mathsf{T}} f(\mathbf{x}; \mathbf{w})$$

Bound on Loss

The bound on empirical loss derives from the following:

 $\ell_{\text{triplet}}(b(\mathbf{x}), b(\mathbf{x}^+), b(\mathbf{x}^-)) \leq$

$$\max_{\mathbf{g},\mathbf{g}^+,\mathbf{g}^-} \{\ell_{\text{triplet}}(\mathbf{g},\mathbf{g}^+,\mathbf{g}^-) + \mathbf{g}'\}$$

$$-\max_{\mathbf{h}} \left\{ \mathbf{h}^{\mathsf{T}} f(\mathbf{x}) \right\} - \max_{\mathbf{h}^+} \left\{ \mathbf{l} \right\}$$

where $\mathbf{g}, \mathbf{g}^+, \mathbf{g}^-, \mathbf{h}, \mathbf{h}^+$ and \mathbf{h}^- are all q-bit binary codes.

Proof: When $(\mathbf{g}, \mathbf{g}^+, \mathbf{g}^-) = (b(\mathbf{x}), b(\mathbf{x}^+), b(\mathbf{x}^-))$ maximizes the first term on the RHS, then LHS = RHS. In all other cases, the RHS can only get larger.

STOCHASTIC GRADIENT DESCENT

We randomly initialize $\mathbf{w}^{(0)}$. Given $\mathbf{w}^{(t)}$, at iteration t+1, we use the following procedure to update $\mathbf{w}^{(t+1)}$:

- 1. Select a random triplet $(\mathbf{x}, \mathbf{x}^+, \mathbf{x}^-)$ from \mathcal{D} .
- 2. $(\hat{\mathbf{g}}, \hat{\mathbf{g}}^+, \hat{\mathbf{g}}^-) =$ solution of loss-augmented inference.
- 3. $(\hat{\mathbf{h}}, \hat{\mathbf{h}}^+, \hat{\mathbf{h}}^-) = (b(\mathbf{x}; \mathbf{w}^{(t)}),$
- . Update model parameters using

$$\delta = \left[\frac{\partial f(\mathbf{x})}{\partial \mathbf{w}}(\hat{\mathbf{g}} - \hat{\mathbf{h}}) + \frac{\partial f(\mathbf{x}^{+})}{\partial \mathbf{w}}(\hat{\mathbf{g}}^{+} - \hat{\mathbf{h}}^{+}) + \frac{\partial f(\mathbf{x}^{-})}{\partial \mathbf{w}}(\hat{\mathbf{g}}^{-} - \hat{\mathbf{h}}^{-})\right]$$
$$\mathbf{w}^{(t+1)} - \mathbf{w}^{(t)} - n\delta - n\lambda\mathbf{w}^{(t)}$$

where $\partial f(\mathbf{x})/\partial \mathbf{w} \equiv \partial f(\mathbf{x}; \mathbf{w})/\partial \mathbf{w}|_{\mathbf{w}=\mathbf{w}^{(t)}}$ and η is the learning rate.

We use mini-batches, and momentum. To form triples, \mathbf{x}^+ is chosen to have same label as \mathbf{x} , while \mathbf{x}^- is a close item in Hamming space to \mathbf{x} but with a different label.

LOSS-AUGMENTED INFERENCE

To use the upper bound, we must solve:

$$(\hat{\mathbf{g}}, \hat{\mathbf{g}}^+, \hat{\mathbf{g}}^-) = \operatorname*{argmax}_{(\mathbf{g}, \mathbf{g}^+, \mathbf{g}^-)} \{ \ell_{\text{triplet}} + \mathbf{g}^{\mathsf{T}} f(\mathbf{g}) \}$$

There are 2^{3q} possible binary codes to maximize over.

For triplet loss functions that depend only on the value

$$d(\mathbf{g}, \mathbf{g}^+, \mathbf{g}^-) \equiv \|\mathbf{g} - \mathbf{g}\|$$

an exact $O(q^2)$ dynamic programming algorithm exists.

Idea: $d(\mathbf{g}, \mathbf{g}^+, \mathbf{g}^-)$ can take on only 2q+1 possible values, since it is an integer between -q and +q.

ASYMMETRIC HAMMING DISTANCE

Multiple items in Hamming space are often equidistant from a query code $b(\mathbf{u})$. We measure proximity with an Asymmetric Hamming (AH) distance between the query $\mathbf{u} \in \mathbb{R}^p$ and a database binary code $\mathbf{h} \in \mathcal{H}$:

$$AH(\mathbf{u},\mathbf{h};\mathbf{s}) = \frac{1}{4} \| \tan \mathbf{s} \|$$

 $\mathbf{g}^{\mathsf{T}}f(\mathbf{x}) + \mathbf{g}^{+\mathsf{T}}f(\mathbf{x}^{+}) + \mathbf{g}^{-\mathsf{T}}f(\mathbf{x}^{-}) \}$ $\left\{\mathbf{h}^{+\mathsf{T}}f(\mathbf{x}^{+})\right\} - \max_{\mathbf{h}^{-}}\left\{\mathbf{h}^{-\mathsf{T}}f(\mathbf{x}^{-})\right\}$

$$, b(\mathbf{x}^+; \mathbf{w}^{(t)}), b(\mathbf{x}^-; \mathbf{w}^{(t)}))$$

 $_{\mathrm{t}}(\,\mathbf{g},\,\mathbf{g}^{+},\,\mathbf{g}^{-})$ $f(\mathbf{x}) + \mathbf{g}^{+\mathsf{T}} f(\mathbf{x}^{+}) + \mathbf{g}^{-\mathsf{T}} f(\mathbf{x}^{-}) \}$

 $\mathbf{g}^+ \|_H - \| \mathbf{g} - \mathbf{g}^- \|_H$

 $\operatorname{anh}(\operatorname{Diag}(\mathbf{s}) f(\mathbf{u})) - \mathbf{h} \|_{2}^{2}$

CIFAR-10

Precision@k **plots** for Hamming distance on 512, 256, 128, and 64-bit codes, trained with (left) triplet ranking loss (right) pairwise hinge loss on CIFAR-10:

Recognition accuracy on the CIFAR-10 test set: $(H \equiv Hamming, AH \equiv Asym. Hamming)$

Hashing, Loss	$k_{\mathbf{NN}}$	Dis.	64-bit	128-bit	256-bit	512-bit
Linear, pairwise	7	Η	72.2	72.8	73.8	74.6
Linear, pairwise	8	AH	72.3	73.5	74.3	74.9
Linear, triplet	2	Η	75.1	75.9	77.1	77.9
Linear, triplet	2	AH	75.7	76.8	77.5	78.0

Baseline

One-vs-all linear L2 SVM [Coates et al 11]

Euclidean 3NN

256/64-bit Hamming and Euclidean **Retrieval Results**:

query (256bit Hamming) (64bit Hamming)

0		

Accuracy 77.959.3

(Euclidean)

N		K.
		Ser.
	4	5

÷		
41		R.
	H	-
		9

MNIST

Hamming precision @ k plots for MNIST (left) four methods with 32-bit codes (right) three code lengths:										
0.99					0.99					L
× 0.96 (ک					.× (€) 0.96					L
UOIS 0.93					Precision	· · · · · · · · · · · · · · · · · · ·				
	Two-layer net,				rec	-128-bit, linea	r, triplet			
L 0.9	Linear, triplet				0.9	 64-bit, linear, 32-bit, linear, 				
0.87	Linear, pairwise		1000	10000	0.87	Euclidean dis		1000	10000	
	10	100 k	1000	10000		10	100	1000	10000	

Classification error rates on MNIST test set:

Hashing, Loss	Dis.	$k_{\mathbf{NN}}$	32-bit	64-bit	128-bit	
Linear, pairwise	ng	2	4.66	3.16	2.61	
Linear, triplet	amming	2	4.44	3.06	2.44	
2-layer Net, pairwise	am	30	1.50	1.45	1.44	
2-layer Net, triplet	H	30	1.45	1.38	1.27	
Linear, pairwise	m.	3	4.30	2.78	2.46	
Linear, triplet	Ham	3	3.88	2.90	2.51	
2-layer Net, pairwise		30	1.50	1.36	1.35	
2-layer Net, triplet	Asy.	30	1.45	1.29	1.20	
Baseline					Error	
Deep net + pretrainin	1.2					
Large margin nearest neighbor [Weinberger et al 05]						
RBF-kernel SVM						
2-layer neural net						
Euclidean 3NN						

MULTI-INDEX HASHING [CVPR 12]

Exact NN search in Hamming space.

Search tasks: Given a corpus of q-bit codes, and a query \mathbf{u} ,

(1) find k codes with k smallest Haming distances from **u**,

(2) find all codes that differ from \mathbf{u} in r bits or less.

Imagine a dataset of 15-bit codes, a search radius of r=2. Black marks depict bits that differ from a query **u**.

(The first 3 codes have Hamming distance $\leq r = 2$.)

Key Idea: Partition the codes into 3 substrings. Then, instead of searching r = 2 in the full codes, search r = 0in the substrings.

When two binary codes \mathbf{h} and \mathbf{g} differ by r bits or less, then, in at least one of their 3 substrings they must differ by at most |r/3| bits.

Result: A single threded implementation finds 1000 Hamming nearest neighbors of queries from one billion 64-bit codes in under 100ms.

(source code avilable at github.com/norouzi/mih/)