Problem

Structured output prediction: learning a mapping from inputs to complex multivariate outputs \((x \rightarrow y)\)

Given a dataset of input-output pairs, \(D = \{(x^i, y^i)\}_{i=1}^n\).

learn a conditional distribution \(p(y | x)\) consistent with \(D\).

- Image captioning
- Semantic segmentation
- Machine translation

As data sets change, people get bigger but plane seating has not radically changed.

- Speech recognition

Model

We use autoregressive sequence to sequence models with attention, but our approach is more generic.

\[p(y | x) = \prod_{i=1}^{\tau} p(y_i | x, y_{<i}) \]

- At inference, beam search finds \(\hat{y}(x) \approx \argmax p(y | x) \).
- As the reward signal, BLEU score or negative edit distance measure the quality of the predictions: \(\sum_{i=1}^\tau \delta(y_i \neq \hat{y}_i)\)

Related Work

- [Sutskever et al., CVPR 16] Rethinking the Inception
- Label smoothing can be thought as a special case of our method

Some alternative methods all of which require either sampling or inference from the model during training.

- [S. Bengio et al., NIPS 15] Schedule sampling
- [Ranzato et al., ICML’16] Sequence level training
- [Wiseman & Rush, EMNLP’16] Beam search optimization

Model

We use autoregressive sequence to sequence models with attention, but our approach is more generic.

\[p(y | x) = \prod_{i=1}^{\tau} p(y_i | x, y_{<i}) \]

- At inference, beam search finds \(\hat{y}(x) \approx \argmax p(y | x) \).
- As the reward signal, BLEU score or negative edit distance measure the quality of the predictions: \(\sum_{i=1}^\tau \delta(y_i \neq \hat{y}_i)\)

Related Work

- [Sutskever et al., CVPR 16] Rethinking the Inception
- Label smoothing can be thought as a special case of our method

Some alternative methods all of which require either sampling or inference from the model during training.

- [S. Bengio et al., NIPS 15] Schedule sampling
- [Ranzato et al., ICML’16] Sequence level training
- [Wiseman & Rush, EMNLP’16] Beam search optimization

Model

We use autoregressive sequence to sequence models with attention, but our approach is more generic.

\[p(y | x) = \prod_{i=1}^{\tau} p(y_i | x, y_{<i}) \]

- At inference, beam search finds \(\hat{y}(x) \approx \argmax p(y | x) \).
- As the reward signal, BLEU score or negative edit distance measure the quality of the predictions: \(\sum_{i=1}^\tau \delta(y_i \neq \hat{y}_i)\)

Related Work

- [Sutskever et al., CVPR 16] Rethinking the Inception
- Label smoothing can be thought as a special case of our method

Some alternative methods all of which require either sampling or inference from the model during training.

- [S. Bengio et al., NIPS 15] Schedule sampling
- [Ranzato et al., ICML’16] Sequence level training
- [Wiseman & Rush, EMNLP’16] Beam search optimization

RL

Entropy regularized expected reward (with a regularizer \(\tau\))

\[\hat{Q}(x; \tau) = \sum_{y \in Y} \mathbb{E}[\text{exp}(\tau \log p(y | x)) / \tau] \]

To optimize \(\hat{Q}\), one uses REINFORCE, e.g. [Runciano et al.]

The gradients are high variance. The training is slow.

One needs to bootstrap training from an ML trained model.

REINFORCE ignores direct supervision after initialization.

Sampling from Exponentiated Payoff

Stratified sampling: first select a particular reward value, and then sample an output with that reward value.

- If reward is negative Hamming distance, \(r(y, \hat{y}) = -D_H(y, \hat{y})\) one can draw exact samples from \(q_i(y | x)\)

\[q_i(y | x) = \frac{1}{Z} \exp(\tau \log p(y | x) / \tau) \]

Optimal \(p(y | x)\):

KL as a Bregman divergence

\[D_p(p \parallel q) = \sum_{q \in Y} p(q) \log \frac{p(q)}{q(q)} \]

TIMIT Speech Recognition

Phone error rates (PER) for different methods on TIMIT dev & test sets. Average (min, max) PER for 4 training runs:

<table>
<thead>
<tr>
<th>Method</th>
<th>Dev set</th>
<th>Test set</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML baseline</td>
<td>20.9% (20.9, 22.8)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.1)</td>
<td>19.74 (19.23, 20.16)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.1)</td>
<td>19.64 (19.23, 20.16)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.7)</td>
<td>21.28 (20.5, 21.97)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.7)</td>
<td>21.28 (20.5, 21.97)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.00)</td>
<td>20.15 (19.44, 20.84)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.00)</td>
<td>20.15 (19.44, 20.84)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.90)</td>
<td>18.46 (17.86, 19.07)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 1.00)</td>
<td>18.46 (17.86, 19.07)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Dev set</th>
<th>Test set</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML baseline</td>
<td>36.95 (36.95, 37.95)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.75)</td>
<td>36.62 (36.62, 37.91)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.80)</td>
<td>36.90 (36.90, 37.91)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.85)</td>
<td>36.91 (37.23, 37.23)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.90)</td>
<td>36.91 (37.23, 37.23)</td>
<td></td>
</tr>
<tr>
<td>RAML, (r = 0.95)</td>
<td>36.94 (36.94, 37.94)</td>
<td></td>
</tr>
</tbody>
</table>

The RAML approach with different \(r\) considerably improves upon the maximum likelihood baseline.

Follow-up work: UREX

- Is RAML applicable to RL with unknown reward landscapes?

Improving Policy Gradient by Exploring User-Appreciated Rewards. (arXiv:1611.09921)

The key idea is to sample from \(p(y | x)\) and perform importance correction given \(\exp(\tau \log p(y | x) / \tau)\).

Dalle Schuurman

Reward Augmented Maximum Likelihood (RAML) for Neural Structured Prediction

Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans